
SANDIA REPORT
SAND2012-4667
Unlimited Release
Printed June, 2012

Summary of Work for ASC L2
Milestone 4465: Characterize the Role
of the Mini-Application in Predicting
Key Performance Characteristics of
Real Applications

Richard F. Barrett, Paul S. Crozier, Douglas W. Doerfler, Simon D. Hammond,
Michael A. Heroux, Paul T. Lin, Heidi K. Thornquist, Timothy G. Trucano, Courtenay
T. Vaughan

Center for Computing Research
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1319

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

2

SAND2012-4667
Unlimited Release
Printed June, 2012

Summary of Work for ASC L2 Milestone 4465:
Characterize the Role of the Mini-Application in

Predicting Key Performance Characteristics of Real
Applications

A suite of “mini-apps” has been created to serve as proxies for full scale applications. Each
miniapp is designed to represent a key performance characteristic that does or is expected to
significantly impact the runtime performance of a scientific or engineering application pro-
gram. In this paper we introduce a methodology for assessing the ability of these mini-apps
to represent these performance issues, and apply the methodology to a set of applications.

3

Acknowledgment

The Mantevo project began as a Sandia laboratory funded project in 2007.

Support for this work was provided through the Advanced Simulation and Computing
(ASC) program funded by U.S. Department of Energy’s National Nuclear Security Agency.
This e↵ort was greatly enhanced by interactions with sta↵ throughout Sandia as well as
many external organizations. It is heartening to discover the active interests, supported by
broad and deep expertise, of the computational science community.

4

Contents

Summary 11

1 Introduction 13

2 Overview of the Mantevo Project 15

3 Methodology 17

3.1 Verification . 18

3.2 Validation . 19

3.3 A Discussion of Metrics . 21

4 Experimental Platforms 23

4.1 Cielo: Cray XE6 . 23

4.2 Red Sky . 26

4.3 Chama . 27

4.4 Some workstations . 27

5 Making the link to full applications 31

5.1 A Molecular Dynamics code . 31

5.1.1 Model Abstractions . 35

5.1.2 Performance Domain . 35

5.1.3 Diagnostic: Total time . 36

5.1.4 Diagnostic: Force calculation time . 36

5.1.5 Diagnostic: Time for construction of neighbors 36

5.1.6 Diagnostic: Time for inter-process communication 37

5

5.1.7 Summary . 37

5.1.8 Performance on Red Sky . 38

5.1.9 Discussion . 38

5.2 A Semiconductor Device Simulation code . 39

5.2.1 Model abstractions . 44

5.2.2 Performance Domain . 44

5.2.3 Diagnostic: Node memory bandwidth . 45

5.2.4 Diagnostic: Cache performance . 46

5.2.5 Diagnostic: Weak scaling . 48

5.2.6 Discussion . 49

5.3 A Shock Physics code . 49

5.3.1 Model abstractions . 51

5.3.2 Performance Domain . 53

5.3.3 Diagnostics: Boundary exchange characteristics 53

5.3.4 Diagnostic: Weak Scaling . 54

5.3.5 Alternative communication strategies . 56

5.3.6 Discussion . 57

5.4 A Circuit Simulation code . 58

5.4.1 Model Abstractions . 62

5.4.2 Model Enhancements . 62

6 Summary and future work 63

References 64

6

List of Figures

4.1 Cielo XE6 architecture. Image courtesy of Cray Inc. 23

4.2 The XE6 compute node architecture. Images courtesy of Cray, Inc. 25

4.3 The XE6 Gemini architecture. Images courtesy of Cray, Inc. 25

4.4 Red Sky node and IB interconnect (courtesy of Sun Microsystems) 26

4.5 Chama architecture . 29

5.1 Molecular dynamics computation . 32

5.2 Code: miniMD force calculation . 34

5.3 Thermodynamic properties output for miniMD and LAMMPS. Good energy
conservation and good agreement are observed for this simple NVE ensemble
test problem consisting of 32,000 LJ atoms at a reduced density of 0.8442. . . . 35

5.4 Performance, LAMMPS and miniMD : Total time, strong scaling 37

5.5 Performance, LAMMPS and miniMD : Force time, strong scaling 38

5.6 Performance, LAMMPS and miniMD : Neighbor time, strong scaling 39

5.7 Performance, LAMMPS and miniMD : Communication time, strong scaling . 40

5.8 Performance: LAMMPS and miniMD, 32k atoms, on Red Sky. 42

5.9 Charon steady-state solution . 42

5.10 miniFE domain . 43

5.11 miniFE hexahedral finite element . 44

5.12 E↵ects of the number of cores per node on the FEA and solver phases of
Charon and miniFE. 45

5.13 E↵ects of memory speeds on the FEA and solver phases of Charon and
miniFE. Performance is relative to 1333 MHz. 46

5.14 Cache behavior of the FEA and solver phases of Charon and miniFE. 47

5.15 Relative scaling of solvers . 48

7

5.16 CTH shaped charge simulation . 50

5.17 Performance: CTH and miniGhost . 51

5.18 Boundary exchange communication patterns for the CTH shaped charge prob-
lem and miniGhost. The process in row i sends data to the process in column
j. 54

5.19 Weak scaling of CTH and miniGhost on Cielo and Chama 55

5.20 Cielo process map . 56

5.21 Performance of MiniGhost with MPI-rank remapping on Cielo 58

5.22 CTH boundary exchange and computation . 59

5.23 Performance of miniGhost Communication Strategies on Cielo 59

5.24 General Circuit Simulation Flow in Xyce . 60

5.25 Di↵erent Load Balance/Partitioning for Device Evaluation and Linear Solve . 61

8

List of Tables

2.1 List of Mantevo miniapps . 16

4.1 Comparison of Chama, Cielo and Red Sky . 24

5.1 Standard deviations, as a percentage of the time, for LAMMPS and miniMD
experiments . 41

5.2 miniGhost average hop counts on Cielo . 57

9

10

Summary

A suite of “mini-apps” has been created to serve as proxies for full scale applications. Each
miniapp is designed to represent a key performance characteristic that does or is expected to
significantly impact the runtime performance of a scientific or engineering application pro-
gram. In this paper we introduce a methodology for assessing the ability of these mini-apps
to represent these performance issues, and apply the methodology to a set of applications.

The work reported herein is in support of the ASC Level 2 milestone, “Characterize
the Role of the Mini-Application in Predicting Key Performance Characteristics of Real
Applications”. The deliverable for the milestone was a presentation, 23 May 2012. The
review committee is

• James A. Ang, Scalable Architectures (1422) manager

• Teddy D. Blacker, Simulation Modeling Sciences (1543) manager

• Robert J. Hoekstra (lead), Scalable Algorithms (1424) manager

• Allen L. McPherson, Computer Scientist, Los Alamos National Laboratory

• William J. Rider, Computational Physicist, Computational Shock and Multiphysics
(1443)

• Charles (Bert) Still, Computational Physicist, Lawrence Livermore National Labora-
tory

The statement of the milestone is:

The Mantevo project includes a set of application proxies, referred to as mini-apps, and
designed by code developers to represent key runtime performance characteristics of their
applications. SNL will analyze two of these mini-apps to determine how well they represent
the full application programs. Specifically, SNL will profile the runtime performance of the
mini-app and application, characterizing the relationship between the two on at least two
HPC platforms (including Cielo).

11

12

Chapter 1

Introduction

Throughout its history, computational science has grown in conjunction with the compu-
tational capabilities provided to it [24, 32, 12, 31]. New computational capabilities inspire
new solutions methods, the time to solutions of existing methods may be decreased, and
more complex problems can be made possible. However, e↵ectively understanding those
computational capabilities typically requires access to them.

We have entered a period where the previous approach to increasing computational ca-
pability has played out. Computer architects have therefore fundamentally altered their ap-
proach, and it is widely recognized that current computational characteristics must change.

For example, the scientific community is currently investing significant e↵ort in preparing
for, influencing, and directing the development of an exascale computing capability in an
accelerated manner [36, 2]. In order to have an influence on the architectures that could be
produced within the accelerated time frame, it is critical to provide meaningful and actionable
information throughout the codesign space. Exploring the the performance characteristics
and capabilities of full scale scientific and engineering application computer programs is
prohibitive, and probably intractable on platforms that don’t yet exist.

In recognition of the various challenges in providing an e↵ective environment for this
scale of computing, the United States Department of Energy’s Advanced Simulation and
Computing (ASC1) Campaign’s has acquired a breadth of important testbed systems. These
testbeds provide a concrete means for investigating, understanding, and influencing... Yet
porting full application codes to these testbeds is a prohibitive labor intensive e↵ort. The
Mantevo project [18] has produced a set of proxies for these applications, called miniapps,
that enable rapid exploration of key performance issues that impact a broad set of scientific
application programs of interest to the ASC program as well as a broader community.

Yet how can we be sure that these miniapps adequately represent that which they are
intended to represent? The key contribution of the work described herein is a methodology,
rooted in formal verification and validation (V&V) e↵orts that have been developed for
experimental science, for determining the quality of the miniapp as it pertains to a large,
complex application code.

1
http://nnsa.energy.gov/asc/supercomputers/

13

http://nnsa.energy.gov/asc/supercomputers/

14

Chapter 2

Overview of the Mantevo Project

The Mantevo project [18], initiated as a Sandia LDRD, was motivated by some questions
arising from the Trilinos project [17]. These questions concerned the direction of some coding
implementations targeting emerging and expected future architectures, including multi-core,
many-core, and GPU-accelerated high performance computers. The goal was to create a set
of application- relevant codes enabling rapid exploration of algorithmic options and their
mapping to computing platforms.

As discussed above, each miniapp is designed to focus attention on a key performance
characteristic of one or more application programs, enabling agile exploration of a variety
of issues that impact performance, ranging from low level hardware capabilities through the
codesign space [14] to the application.

Miniapps are designed to be a tool, useful throughout the co-design space. For example,
each of the ASC Exascale working groups1 have identified miniapps for use from hardware
registers to the application. Also, the Exascale Grand Challenge (XGC) project at Sandia
National Laboratories in includes a 3DI e↵orts are targeted at heterogeneous integration of
Logic (MPU Process), DRAM (DRAM Process), and Silicon Photonics (Custom Process).
Unlike a benchmark, the result of which is a value to be ranked, the output of a miniapp
is information, which must be interpreted within some often subjective context. Unlike a
compact application, which is designed to capture some sort of physics behavior, miniapps
are designed to capture some key performance issue in the full application. Unlike a skeleton
application, which is designed for only focusing on inter-process communication perhaps
involving a “fake” computation, miniapps create a meaningful context in which to explore
the key performance issue. Miniapps are developed and owned by application code teams.
Miniapps are intended to by modified, and thus are limited to O(1k) source lines of code
(SLOC), allowing for unconstrained modification. Once no longer useful for these purposes,
a miniapps life will end. Miniapps are freely available as open source software under an
LGPL license.

The current set of miniapps in the Mantevo project are listed in Table 2.1. The first
miniapp was HPCCG, which formed and solved a sparse linear system of equations. Although
this has provided an important capability, it was soon realized that in order to provide a
stronger tie to applications of interest, the context in which the linear system is formed

1
https://asc.llnl.gov/exascale/

15

https://asc.llnl.gov/exascale/

Miniapp Description
HPCCG Sparse linear system solver (CG)
miniFE Implicit finite element method (FEM)

miniGhost Finite di↵erence or volume method
miniMD Molecular dynamics

miniITCFE Implicit Thermal Conduction (FEM)
miniETCFE Explicit Dynamics (FEM)
miniXyce Circuit simulation

Table 2.1. List of Mantevo miniapps

needed strengthened. The result was miniFE, putting the linear system into the context of
an implicit finite element solver.

16

Chapter 3

Methodology

Miniapps are designed to provide a predictive capability for some key performance issue
in a full application. Ensuring that a miniapp completely fulfills its intent is a di�cult
and probably ongoing task. Further, the runtime behavior complex scientific application is
typically problem dependent, and therefore its important to understand the di↵erent ways
that a code can be used and have a means for configuring the miniapp to mimic the important
features under consideration.

Thus our approach is to build up a “body of evidence” in support of the goals of a
miniapp, combining formal verification and validation (V&V) techniques with our knowledge
and experience bases.

Verification is the process of determining that a model implementation accurately rep-
resents the developers conceptual description of the model and the solution to the model.
Validation is the process of determining the degree to which a model is an accurate rep-
resentation of the “real world” (in this case the performance characteristics of the “real”
application) from the perspective of the intended uses of the model1. That is, within the
context of the intent of the comparisons of a model with the “real world”, we must verify
that the applications (“real world”) and miniapps (“model”) compare well in the perfor-
mance dimensions of interest. This is our defined means of assessing that the miniapps
are accomplishing what they are designed and required to do (or not). All of the work
(and possibly art) in this methodology will be defining a set of comparisons that allow us
to draw conclusions of this kind about the miniapps. We must also understand how close
these comparisons should be for us to be able to conclude that the miniapps are suitably
accurate models of real code performance, or that they aren’t. There will clearly be signif-
icant components of judgment embedded in this methodology given the di�cult nature of

1These terms are as defined by the American Society of Mechanical Engineers (ASME, 2006) and the
American Institute of Aeronautics and Astronautics (AIAA, 1998)), and this usage has basically been adopted
by the United States Departments of Energy (DOE) and Defense (DoD). IEEE definitions (IEEE, 1991) are
also useful and relevant in this context. These are: Verification – “The process of evaluating a (software)
system or component to determine whether the products of a given development phase satisfy the conditions
imposed at the start of that phase. (2) Formal proof of program correctness.” Validation – “The process of
evaluating a (software) system or component during or at the end of the development process to determine
whether it satisfies specified requirements.” Succinctly and informally, and compatible with these more
formal definitions, the reader can assume that we mean the following: Verification – the process of assessing
the evidence that a miniapp is correctly implemented. Validation – the process of assessing the evidence of
how closely the miniapp resembles the full application in the performance domain of interest.

17

this problem, but the goal is to achieve some minimal level (at least) of objective evidence
that informs us constructively about the fidelity of the miniapps. This approach requires
extensive knowledge of, and experience developing, executing, profiling, maintaining, and
extending multi-scale, multi-physics scientific and engineering application software, target-
ing highest performance computing platforms. It also requires a strong understanding of the
miniapps and their intended use: what they are intended to represent and what they are not
intended to represent. We combine this knowledge into a formal verification and validation
(V&V) methodology that lets us examine experimental and predicted data.

This methodology adheres to the spirit of experimental validation as described in [27,
26, 28, 38] because validation referents are intended to be representative of the empirical
(that is, “real”) performance of the full applications. However, its important to note that
this V&V process is executed within the goals of miniapps, and thus we are not concerned
with ensuring any sort of V&V in regard to the application goals such as correctness of the
algorithms and output. In other words, in considering the performance fidelity of minapps,
we are not addressing questions about the verification and validation of the full application;
we are assuming that this has been done or, if not, that this is an issue that is not relevant
to the immediate goals of developing miniapps. The status of this assumption is in fact
of interest, but beyond our immediate scope. Our focus is strictly on the computational
runtime characteristics. Beyond this issue we also stress that miniapps are not intended to
reproduce specific physics and mathematics represented by the full application. To some
degree, we therefore have an operating assumption that a valid miniapp can approximate
the runtime performance characteristics of a full application to a useful degree without
reproducing the mathematics and physics of the full application to a useful degree. This
may be an assumption that is worthy of fuller consideration also, but once again it is beyond
the scope of our near term priorities.

3.1 Verification

Mantevo miniapps have been configured so that they produce some outcome that is mea-
surable with some level of confidence of correctness. For example, miniFE solves a Partial
Di↵erential Equation (PDE) such that the residual norm of the linear system solution is
within an acceptable tolerance. MiniGhost includes a means for ensuring correctness.

With regard to the application, we necessarily begin with the assumption it meets it
V&V requirements. That said, our methodology still includes a strong element of software
verification. In particular, because our validation approach is designed to expose di↵erences
in the runtime characteristics between the miniapp and application, the di↵erences seen can
point to areas where both the miniapp and application should be examined. In some sense,
then, this is a code-to-code V&V exercise, whereby lack of agreement between the two can
strengthen the (always ongoing) V&V e↵orts of each. This of course is not a definitive result,
since both codes may be similarly incorrect, and therefore somewhat controversial. However,
given the assumptions stated above, this sort of information can still provide a useful service

18

if properly understood.

3.2 Validation

For a set of diagnostic runtime performance characteristics or elements, which we loosely
refer to as the performance domain,

{D} = D1, D2, . . . , Dn

, (3.1)

let

{B} = B1, B2, . . . , Bn

, (3.2)

be a corresponding set of baseline full application observational referents, (the “validation
data”) and let

{A} = A1, A2, . . . , An

, (3.3)

be a set of corresponding miniapp measurements.

We then consider the di↵erence between the application referents and the miniapp mea-
surements in the performance domain defined by (3.1) as some kind of mathematical norm,
which we will also call a validation metric:

X
i

= kB
i

� A
i

k
i

, 8i. (3.4)

Here, we have suggested that the di↵erence measurement – the norm – might vary for
each component of the performance domain. Clearly, this can become extremely complex
and examples presented below will help clarify this. A very simple example could be a
situation in which a positive number specifies every component of performance domain. In
such a case, we then could simply have:

X
i

= kB
i

� A
i

k
i

= |B
i

� A
i

|, 8i. (3.5)

But one component of the performance domain might be specified this way, while another
component might be as general as a functional or a time series, in which case the norm is
far more complex than simply measuring the absolute value of the di↵erence between two
numbers. There is also the possibility that stochastic characteristics must be attached to
one or more of the performance dimensions, which further complicates the mathematics

19

that might underlie the validation metric. We do assume that all the components of the
performance domain can have a norm distance definition attached to them. In something as
extremely complicated as overall runtime performance behavior, even this assumption might
fail if we had to deal with qualitative factors in performance. We do not see the need for
this level of generality for this discussion.

The point of introducing a validation metrics that measures the di↵erence between
miniapp performance and the application referent is to draw some conclusion about how
well the miniapp is reproducing the performance behavior of the full application. A sim-
ple illustration of this logic is as follows. Suppose that the validity of the miniapp was
determined by how accurately it reproduces the performance of the full application in the
performance domain. Then the di↵erences in Equation 3.4 provide the means for assessing
validity. Thus, given the measured set of values X

i

, fori = 1, . . . , n, suppose “valid” accuracy
can be assessed using a set of threshold accuracies T 1

i

, T 2
i

, fori = 1, . . . , n. Then assessment
of the validation metric information might then be posed as:

V
i

=

8
><

>:

predictive, for T 1
i

 X
i

 T 2
i

caution, for T 2
i

 X
i

 T 3
i

not predictive, for X
i

� T 3
i

(3.6)

where V
i

is a validity statement attached to performance domain dimension i for some
threshholds T j

i

, for j = 1, . . . , 3.

While Equation 3.6 looks like a generally useful algorithm for assessment, we caution
there is a great deal of overloading going on in this simple expression. For example, the
choice of thresholds could clearly be extremely di�cult. The willingness to even evaluate
validity based on a relatively direct threshold assessment is open to debate. And, developing
the set V

i

, i = 1, . . . , n leaves open the issue of how all of this information is combined into
a single appraisal of the validity of the minapp. Nonetheless, this logic is a clear illustration
of the kind of ideal thinking that should underlies the validation assessment of miniapps.

Choice of diagnostics defining the performance domain is clearly a challenge. Example
diagnostics for the set D include inter-process communication, which can then be further
categorized, such as the number and distribution of partners, and the size and frequency
of message tra�c. Example observational referents B for the full application may be em-
pirically measured, which we denote as BM . Or the referents may need to be forecast or
estimated using expert judgment, perhaps with a tool like the SSTK, denoted Bp. Using
referents that are not empirically measured for validation is sometimes called face validation.
While accepted by several communities, including DoD, clearly face validation has weaker
validation inference associated with it than the use directly observed empirical referents.
We expect that we might have to use a mixture of both in the validation methodology for
miniapps. In general, we emphasize that measurements involving miniapps A must be care-
fully designed and captured. We also emphasize that having confidence in A and B requires
having accumulated meaningful verification evidence.

20

This framework provides direct advantages. First, the input information D,B, and A
and are open to challenge and refinement, are mutable and extensible, and thus the role
interpretive judgment in the final results of validity assessment is transparent within the
context of use. For example, new diagnostics, new or corrected baseline observations, and
new or corrected measurements could be added to the model in the service of better assess-
ment. Second, the way the results are computed is can be easily subjected to peer-review
scrutiny.

3.3 A Discussion of Metrics

The choice of measure significantly influences the way in which di↵erences (the validation
metric k ·k

i

) between validation data B
i

and miniapp measurements A
i

are viewed. It will be
important to careful choose and explore options...(Expecting to engage Scott Mitchell w.r.t.
his LDRD work in this area.)

For our validation work, we choose metrics based on their ability to emphasize or high-
light di↵erences between the application characteristic under consideration and the miniapp
measurements.

Discussion of multiple experiments as a means of defining bounding error bars. At-
tributable to computer system issues such as ...

21

22

Chapter 4

Experimental Platforms

We employed a variety of computing environments in our work, including the current ASC
capability machine (Cielo) and two capacity machines (Red Sky and TLCC2 Chama). Table
4.1 lists the speeds and feeds. Representative processors found in workstations let us examine
some particular issues of interest at that scale.

4.1 Cielo: Cray XE6

Cielo, an instantiation of a Cray XE6, is composed of AMD Opteron Magny-Cours proces-
sors, connected using a Cray custom interconnect named Gemini, and a light-weight kernel
(LWK) operating system called Compute Node Linux. The system, illustrated in Figure 4.1,
consists of 8,944 compute nodes, for a total of 143,104 cores.

Figure 4.1. Cielo XE6 architecture. Image courtesy of
Cray Inc.

23

Chama Cielo Red Sky
Vendor Appro Cray Sun/Oracle
Installed 2012 2011 2008
OS TOSS CNL TOSS
Compute Nodes 1,232 8,894 8,894
Sockets/Node 2 2 2
Cores/Socket 8 8 4
Total Cores 19,712 142,304 18,544
Processor Intel Sandy Bridge AMD Magny-Cours Intel Nehalem
Frequency (GHz) 2.6 2.4 2.93
FLOPS/Clock 8 4 4
GFLOPS/Node 332.8 153.6 93.76
Memory Type 1600 MHz DDR3 1333 MHz DDR3 1333 MHz DDR3

L1 8⇥ 32 KB I, D 8⇥ 64 KB, I,D 4⇥ 32 KB, I,D
Cache L2 8⇥ 256 KB 8⇥ 512 KB 4⇥ 256 KB

L3 20 MB 12 MB (10MB) 8 MB
Memory/Node (GB) 32 32 12
Mem BW/Node (GB/s) 102 85.3 64.0
NUMA Regions/Node 2 4 2
Network Interface Qlogic QDR IB Cray Gemini Mellanox QDR IB
Network Topology Fat-Tree, 3-level 3-D Torus 3-D torus
PingPong Latency (µs) 1.3
Bi-dir Inj. BW/node (GB/s) 5 10

Bi-dir Link Bandwidth (GB/s) 8
9.4, 12-bit links
18.8, 24-bit links

Table 4.1. Comparison of Chama, Cielo and Red Sky

Each Cielo node consists of two oct-core AMD Opteron Magny-Cours processors1. Each
Magny-Cours processor is divided into two memory regions, called NUMA nodes, each con-
sisting of four processor cores (illustrated in Figure 4.2). Thus each compute node consists
of 16 processor cores, evenly divided among four NUMA nodes, which are connected using
HyperTransport2 version 3. The links between NUMA nodes run at 6.4 GigaTransfers per
second (GT/s). Each core has a dedicated 64 kByte L1 data cache, a 64 kByte L1 instruction
cache, and a 512 kByte L2 data cache, and the cores within a NUMA node share a 6 MByte
L3 cache (of which 5 MBytes are user available).

Cielo compute nodes are connected using Cray’s Gemini 3-D torus high-speed intercon-
nect, illustrated in Figure 4.3. A Gemini ASIC supports two compute nodes. The X and Z

1Magny-Cours processors are also available with 12 cores divided into 6-core NUMA nodes, which form
the basis of the new Hopper II computer at NERSC (http://www.nersc.gov/nusers/systems/hopper2/).

2
http://www.hypertransport.org

24

http://www.nersc.gov/nusers/systems/hopper2/)
http://www.hypertransport.org

Figure 4.2. The XE6 compute node architecture. Images
courtesy of Cray, Inc.

(a) Cray XE6 Gemini Architecture (b) XE6 Node Architecture
with AMD Magny-Cours pro-
cessors and Cray Gemini high-
speed interconnect

Figure 4.3. The XE6 Gemini architecture. Images cour-
tesy of Cray, Inc.

25

dimensions use twice as many links as the Y dimension (24 bits and 12 bits respectively) and
introduces an asymmetry to the nodes in terms of bandwidth in the torus. This needs to be
taken into account when configuring a system in order to balance the bisection bandwidth of
each dimensional slice in the torus. Cielo is configured as an 18⇥8⇥24 3-D torus. Injection
bandwidth is limited by the speed of the Opteron to Gemini HyperTransport link, which
runs at 4.4 GT/s. Links in the X and Z dimensions have a peak bi-directional bandwidth of
18.75 GB/s, and the Y dimension peaks at 9.375 GB/s.

Relative to its SeaStar predecessor used in the Cray XT series [7], Gemini provides an
improvement to the achievable asymptotic bandwidth for point-to-point communication.
There are two potential bottlenecks to consider: injection bandwidth and link bandwidth.
Injection bandwidth is limited by the speed of the Opteron to Gemini HyperTransport link,
which runs at 4.4 GT/s. Link bandwidth is determined by the signaling rate and the width
of the link. Due to Gemini’s double-density packaging, links in the X and Z dimensions
are twice the width of links in the Y dimensions (24-bits vs. 12-bits wide). Gemini is also
intended to provide support for fine grained remote load-store-style messaging, as is typical
of partitioned global address space (PGAS) languages [35].

4.2 Red Sky

Red Sky is a cluster composed of Sun Vayu blades, two nodes per blade, connected QDR
InfiniBand (illustrated in Figure 4.4. Each node consists of dual-sockets fitted with the

Figure 4.4. Red Sky node and IB interconnect (courtesy
of Sun Microsystems)

Intel 5570, “Nehalem-EP” 2.93 GHz quad-core processors, with each processor having an
integrated memory controller with three 1333 MHz DDR3 memory channels (6 GB total
per socket). Each blade also integrates 10/100 Mbps and Gigabit Ethernet channels for
cluster management. The midplane (NEM) integrates 4x QDR IB switches. The Mellanox

26

HCA connects the nodes to the IB router and has a peak bandwidth of 40 Gbits/sec to the
NEM modules. Two 36-port QDR InfiniBand (IB) switches are used per chassis and the port
connections for the toroidal interconnect. For each of the 36-port switches (SW) twelve ports
are used to connect to the node HCAs, nine to connect SW1 to SW2, and the remaining
fifteen ports form the external X, Y, Z links for the 3D torus. Each row, consisting of 12
racks, forms a 6 ⇥ 2 ⇥ 8 (X,Y,Z) torus building block. The logical 6 ⇥ 6 ⇥ 8 (X,Y,Z) torus
maps to physical 12 ⇥ 3 ⇥ 8 node configuration. Logical Y dimension “folds over” at the
last physical row and the torus is completed in an adjacent rack of physical row 1. Logical
X dimension skips every other rack in the physical X dimension. Logical Z dimension is self
contained within a rack and is fixed at 8.

Red Sky is a modular system that consists of three sections, identified by the three
names: Red Sky, Red Horizon, and Red Mesa, integrated as required to meet programmatic
and operational requirements, for a total of 42,400 processor cores. For the purposes of the
work herein, a group of racks in 3 rows of cabinets that include 2,823 core nodes (22,584
cores), yielding a peak performance of 265 TFLOPS.

The software environment on Red Sky uses the TOSS 1.3-4 which is based on Red Hat
RHEL 5 Linux with several patches. The InfiniBand uses OpenFabrics software configured
with the OpenSM Subnet manager incorporating a custom routing engine developed at
Sandia for the 3D torus.

4.3 Chama

Chama, the latest Tri-lab Capacity Computer (TLCC) sited at Sandia, is composed of
1,232 compute nodes connected using a Qlogic QDR Infiniband interconnect, and the TOSS
operating system3. Each node consist of two Intel Xeon Sandy Bridge oct-core processors
(illustrated in Figure 4.5(a)), configured as a Intel,Qlogic QDR FAT Tree, illustrated in
Figure 4.5(c). Each core has a dedicated 32 kByte L1 data cache, a 32 kByte L1 instruction
cache, and a 256 kByte L2 data cache, and the cores within each socket share a 20 MByte
L3 cache.

4.4 Some workstations

Workstations allow us to focus in on some particular issues. We used the following:

• dual socket quad-core Intel Nehalem 5560@ 2.8 GHz processors.

• dual socket quad-core Intel Nehalem 5570@ 2.93GHz processors.

3ASC Program Tripod Operating System Software (TOSS), a Tri-Lab packaging of the CHAOS/SLURM
environment.

27

• dual socket oct-core AMD Magny-Cours 6136@2.4 GHz

• dual socket 12-core AMD Magny-Cours @2.1 GHz

28

(a) Sandy Bridge

(b) Node

(c) Fat tree interconnect

Figure 4.5. Chama architecture

29

30

Chapter 5

Making the link to full applications

In this section, we apply our methodology for linking miniapps to problem-dependent ap-
plication performance factors and evaluating the fidelity of that linkage, then illustrate our
approach by examining four miniapps, each in the context of a large application code. Our
goal is to begin to answer the question, “Under what conditions does a miniapp represent
a key performance characteristic in a full app?” Runtime profiling information is presented
in support of well-specified key performance issues for each code, providing some acceptable
level of confidence that the miniapp is representative of the their relevant computations, in a
manner that will enable experimentation with di↵erent programming models and languages,
communication mechanisms, and architectures.

MiniMD was developed to model the molecular dynamics Lennard-Jones potential, such
as that found in LAMMPS. MiniGhost was designed to provide a means for exploring alter-
natives to the Bulk-Synchronous Parallel programming model with data aggregation inter-
process communication strategy, such as that found in CTH, a shock physics code. MiniFE
was developed to examine Krylov-based linear equations solution methods applied within the
context of a Krylov solver in an implicit finite element method application on unstructured
meshes, such as that used in Charon, a semiconductor device simulator. MiniXyce, currently
under development, is intended to represent Xyce, a circuit simulation code.

5.1 A Molecular Dynamics code

LAMMPS, an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator, is a
classical molecular dynamics code1 [29, 30]. It has potentials for soft materials (biomolecules,
polymers) and solid-state materials (metals, semiconductors) and coarse-grained or meso-
scopic systems. It can be used to model atoms or, more generically, as a parallel particle
simulator at the atomic, meso, or continuum scale.

The physical domain is divided into three dimensional boxes, one per parallel process.
Each process computes forces on atoms in its box using information from nearby processes
(illustrated in Figure 5.1). As they migrate among processes, the atoms carry along their
molecular topology. Communication is via nearest-neighbor six-way stencil. Parallel scaling

1
http://lammps.sandia.gov/

31

http://lammps.sandia.gov/

Figure 5.1. Molecular dynamics computation

would be N/P if load is perfectly balanced. Computation scales as N/P , communication
scales as (N/P)2/3 (for large problems), and memory scales as N/P .

The computational steps for the Velocity-Verlet algorithm are

• update V by 1/2 step (using F),

• update X (using V),

• build neighbor lists (occasionally),

• compute F (using X),

• apply constraints and boundary conditions (on F),

• update V by 1/2 step (using new F), then

• output and diagnostics

Each of N particles is a point mass

• atom

• group of atoms (united atom)

• macro- or meso-particle

Particles interact via empirical force laws

32

• all physics in energy potential force

• pair-wise forces (LJ, Coulombic)

• many-body forces (EAM, Terso↵, REBO)

• molecular forces (springs, torsions)

• long-range forces (Ewald)

Integrate Newton’s equations of motion

• F = ma

• set of N , coupled ODEs

• advance as far in time as possible

Properties via time-averaging ensemble snapshots (vs MC sampling).

MiniMD is designed to model the force computations in typical molecular dynamics ap-
plications. The algorithms and implementation used closely mimic these same operations as
performed in LAMMPS. In particular, miniMD uses the Lennard-Jones potential (Equation
5.2),

V
LJ

= 4"

✓⇣�
r

⌘12
�
⇣�
r

⌘6
◆

(5.1)

= "

✓⇣r
m

r

⌘12
� 2

⇣r
m

r

⌘6
◆

(5.2)

where " is the depth of the potential well, � is the finite distance at which the inter-
particle potential is zero, r is the distance between the particles, and r

m

is the distance at
which the potential reaches its minimum. At r

m

, V
LJ

= �". The distances are related as
r
m

= 21/6�.

The tasks involved in the parallel processing implementation of this model are:

1. Construct neighbors list : Each atom is assigned to a cell in a three-dimensional
bin. Using some distribution definition, a neighbor list (array neigh) is constructed
for each parallel process. (We abbreviate this task as “neigh”.)

2. Collect o↵-process neighbors : Point-to-point inter-process communication collects
o↵-process neighbor data on to the owning parallel process. (We abbreviate this task
as “comm”.)

33

3. Compute forces : Calculate the forces acting upon each atom by the other atoms.
(We abbreviate this task as “forces”.)

The main focus of miniMD is on the force calculation, with the code segment shown in
Figure 5.2.

for (i = 0; i < nlocal; i++) {

neighs = neighbor.firstneigh[i];

numneigh = neighbor.numneigh[i];

xtmp = x[i][0];

ytmp = x[i][1];

ztmp = x[i][2];

for (k = 0; k < numneigh; k++) {

j = neighs[k];

delx = xtmp - x[j][0];

dely = ytmp - x[j][1];

delz = ztmp - x[j][2];

rsq = delx*delx + dely*dely + delz*delz;

if (rsq < cutforcesq) {

sr2 = 1.0/rsq;

sr6 = sr2*sr2*sr2;

force = sr6*(sr6-0.5)*sr2;

f[i][0] += delx*force;

f[i][1] += dely*force;

f[i][2] += delz*force;

f[j][0] -= delx*force;

f[j][1] -= dely*force;

f[j][2] -= delz*force;

}

}

}

Figure 5.2. Code: miniMD force calculation

One easy sanity check diagnostic for molecular dynamics simulations is to make sure that
total energy is conserved. For an NVE ensemble molecular dynamics simulation, the total
energy (the sum of the kinetic and potential energies) should remain essentially constant
throughout the duration of the simulation. If not, either the timestep size is too aggressive,
there are discontinuities in the force field, or there are bugs in the simulation software. For
long-time simulations, there should be little (or no) discernible drift in the total energy.

Given a second molecular dynamics simulation package, additional diagnostics can be
performed. In our case, we can compare miniMD output against LAMMPS output. Given

34

the same input parameters (timestep size, force field definition, density, initial temperature),
very similar steady state average thermodynamic properties (kinetic energy, potential energy,
pressure) should be observed for both codes.

In fact, good energy conservation is observed for both miniMD and LAMMPS, and good
thermodynamic property agreement is observed between the two codes (illustrated in Figure
5.3).

Figure 5.3. Thermodynamic properties output for min-
iMD and LAMMPS. Good energy conservation and good
agreement are observed for this simple NVE ensemble test
problem consisting of 32,000 LJ atoms at a reduced density
of 0.8442.

5.1.1 Model Abstractions

MiniMD and LAMMPS(LJ) are quite similar, providing a strong candidate experiment for
testing our methodology. That said, miniMD does not include the additional complex logic
present in the LAMMPS implementation, resulting in shorter runtimes.

LJ is one particular type of atomic interaction model that can be used in molecular dy-
namics. In the future, miniMD may be expanded to include more complex atomic interaction
models in order to perform an expanded set of comparisons with LAMMPS.

5.1.2 Performance Domain

The strong connection of miniMD to LAMMPS(LJ) provides a rather straightforward means
of applying our methodology. The diagnostics are the time to solution for each computational
phase, using four di↵erent input decks, varying the number of atoms in the simulation.

35

D1 : Total time

D2 : Force calculation time

D3 : Time for construction of neighbor list

D4 : Time for inter-process communication

For each, the input deck was configured as

• ⇢⇤ = 0.8442

• T⇤ = 1.444

• Timestep* = 0.00462

• 4000, 8000, 16000, and 32000 atoms

• 1000 time steps

5.1.3 Diagnostic: Total time

Performance results on a Nehalem workstations and Muzia are illustrated in Figure 5.1.3.
These are the minimum times of three trials for each phase.

5.1.4 Diagnostic: Force calculation time

Performance results on a Nehalem workstations and Muzia are illustrated in Figure 5.5.
These are the minimum times of three trials for each phase. The graphs on the left are
direct comparisons, in terms of time. The graphs on the right show the results of our
validation methodology. Here we use the normalized form X

i

= (B
i

� A
i

)/B
i

, converted to
a percentage.

5.1.5 Diagnostic: Time for construction of neighbors

Performance results on a Nehalem workstations and Muzia are illustrated in Figure 5.6.
These are the minimum times of three trials for each phase. The graphs on the left are
direct comparisons, in terms of time. The graphs on the right show the results of our
validation methodology. Here we use the normalized form X

i

= (B
i

� A
i

)/B
i

, converted to
a percentage.

36

(a) Time

(b) Proportional di↵erence

Figure 5.4. Performance, LAMMPS and miniMD : Total
time, strong scaling

5.1.6 Diagnostic: Time for inter-process communication

Performance results on a Nehalem workstations and Muzia are illustrated in Figure 5.7.
These are the minimum times of three trials for each phase. The graphs on the left are
direct comparisons, in terms of time. The graphs on the right show the results of our
validation methodology. Here we use the normalized form X

i

= (B
i

� A
i

)/B
i

, converted to
a percentage.

5.1.7 Summary

These are the minimum times of three trials for each phase. The average standard deviations
are shown in Table 5.1.

37

(a) Force time

(b) Proportional di↵erence

Figure 5.5. Performance, LAMMPS and miniMD : Force
time, strong scaling

5.1.8 Performance on Red Sky

Strong and weak scaling experiments were run on Red Sky. Performance is illustrated in
Figure 5.8.

5.1.9 Discussion

Although miniMD closely mimics the Lennart-Jones algorithm in LAMMPS, it does so within
the context of a single, focused goal. In LAMMPS the algorithm is contained within the
goals of a much larger scope, requiring additional complexity so that code may be shared
across algorithms, etc.

As stated above, this computes the forces acting upon each atom, and therefore the ac-
tions of each atom (potentially) on the others. This coupling of actions is reflected in a

38

(a) Neighbors

(b) Proportional di↵erence

Figure 5.6. Performance, LAMMPS and miniMD : Neigh-
bor time, strong scaling

coupling of the computation. For example, whereas f[i][·] and f[j][·]...This has impli-
cations with regard to the computational capabilities of current processors. Vectorization
mechanisms, such as the Streaming SIMD Extensions (SSE) and the Advanced Vector Exten-
sions (AVX) instruction sets can e↵ectively manage these sorts of interactions. Conversely,
threading approaches, such as pthreads [8] and OpenMP [9], is problematic due to potential
runtime coupling of f[{i,j}][·].

5.2 A Semiconductor Device Simulation code

Charon is a semiconductor device simulation computer program2 [15, 23] developed at Sandia
National Laboratories. It is a transport reaction code used to simulate the performance of
semiconductor devices under irradiation. Although it employs both a finite element method

2
http://charleston.sandia.gov/Charon/

39

http://charleston.sandia.gov/Charon/

(a) Inter-process Communication

(b) Proportional di↵erence

Figure 5.7. Performance, LAMMPS and miniMD : Com-
munication time, strong scaling

(FEM) and finite volume method (FVM) discretization, this work will focus on the FEM dis-
cretization. The coupled system of nonlinear partial di↵erential equations (PDEs) describing
the drift-di↵usion model is shown in Equation 5.3 in residual form.

R

= �2 5 ·(✏
r

E)� (p� n+ C) = 0,

R
n

=
�n

�t
+5 · (µ

n

n5)�5 · (D
n

5 n) +G = 0, (5.3)

R
p

=
�p

�t
�5 · (µ

p

p5)�5 · (D
p

5 p) +G = 0.

A stabilized FEM discretization strategy is designed to control the instability of the

40

Number of
L(32k) MD(32k) L(16k) MD(16k) L(8k) MD(8k) L(4k) MD(4k)

processor cores
32k atoms 16k atoms 8k atoms 4k atoms

Nehalem workstation
1 0.4 0.3 0.3 0.00 0.5 0.1 0.2 0.5
2 0.5 0.6 1.1 0.00 1.2 0.8 0.4 0.9
4 1.0 2.9 0.6 0.01 1.7 0.8 0.7 1.0
8 4.3 1.0 1.0 0.11 7.1 10.2 4.8 0.0

Muzia
1 0.84 0.14 0.83 0.06 0.03 0.01 0.01 0.03
2 0.67 0.13 0.03 0.05 0.07 0.09 4.28 0.05
4 0.05 0.13 0.03 0.14 5.26 0.06 5.92 0.03
8 0.05 0.18 0.11 0.17 1.80 0.09 2.72 0.06
16 0.07 0.04 1.72 0.02 6.54 0.03 0.18 0.04
32 0.42 0.98 1.45 0.18 0.38 0.15 0.67 0.11
64 4.02 1.69 1.97 1.51 0.21 1.58 0.31 0.12
128 0.98 0.90 1.73 0.53 0.04 0.62 1.70 0.27
256 0.97 0.21 0.84 0.65 0.83 0.25 0.03 0.12

Table 5.1. Standard deviations, as a percentage of the
time, for LAMMPS and miniMD experiments

Galerkin formulation, resulting in the weak form shown in Equation 5.4.

F

=

Z
R

�d⌦ = 0,

F
n

=

Z

✓

R
n

�d⌦�
X

e

Z

⌦e

⌧
n

[µ
n

E ·5
�

]R
n

d⌦ = 0, (5.4)

F
p

=

Z

✓

R
p

�d⌦+
X

e

Z

⌦e

⌧
p

[µ
p

E ·5
�

]R
p

d⌦ = 0.

Finite element discretization of these equations in space on an unstructured mesh pro-
duces a sparse, strongly coupled nonlinear system. These equations are solved using a
Newton-Krylov approach, resulting in a large sparse linear systems of the form

AM�1(Mx) = b, (5.5)

for A 2 CN⇥N , x and b 2 CN , and some preconditioner M .

The linear systems are solved either using BiCGSTAB [41] (typically when the system is
reasonably well-conditioned) or GMRES [34], without restart, when the system is poorly con-
ditioned. A multigrid preconditioner [13], with local incomplete factorization as smoothers
significantly improves scaling and performance [22].

41

(a) Weak scaling (b) Strong scaling

Figure 5.8. Performance: LAMMPS and miniMD, 32k
atoms, on Red Sky.

The code, written using C++, is configured for parallel computation using the MPI-
everywhere model. The Trilinos [17] solvers are employed, with the Trilinos Aztec library
[39, 16] providing the Krylov solvers, and the Trilinos ML library [13] providing the multigrid
preconditioner.

An example 2D steady-state drift-di↵usion solution is illustrated in Figure 5.9 for a
bipolar junction transistor (BJT). The base, emitter and collector are located in the upper
left corner, upper right corner and bottom edge respectively. The colors represent the electric
potential; red denotes high voltage and blue denotes low voltage.

Figure 5.9. Charon steady-state solution

MiniFE is intended to mimic the finite element assembly and linear solution for a problem
on unstructured meshes. MiniFE computes the element di↵usion matrix for the steady state

42

conduction equation by solving

(Ke

12)xy =

Z 1

�1

Z 1

�1

Z 1

�1

k
xy

✓
J⇤
11

@ 1

@⇠
+ J⇤

12

@ 1

@⌫
+ J⇤

13

@ 1

@⇣

◆

·
✓
J⇤
21

@ 2

@⇠
+ J⇤

22

@ 2

@⌫
+ J⇤

23

@ 1

@⇣

◆
|J |d⇠d⌫d⇣

and

I =

Z 1

�1

Z 1

�1

Z 1

�1

F (⇠, ⌫, ⇣)d⇠d⌫d⇣

where
I ⇡ ⌃M

I=1⌃
N

J=1⌃
P

K=1F (⇠
I

, ⌫
J

, ⇣
K

)W
I

,W
J

,W
K

,

as described in [33].

It assembles finite-element matrices into a global matrix and vector, then solves the linear-
system using the Conjugate Gradient method [20]. Each finite-element is a hexahedron with
8 vertex-nodes. These equations are solved on a three-dimensional box of hexahedra. The

Figure 5.10. miniFE domain

Three-dimensional domain of hexahedra (This is a placeholder image!
http://www.andrew.cmu.edu/user/sowen/survey/stc.jpg

domain dimensions are in terms of elements. For example, a 2 ⇥ 2 ⇥ 2 box describes eight
elements (illustrated in Figure 5.11), each of which has eight nodes, so it is a 3 ⇥ 3 ⇥ 3
node domain (27 nodes). The coordinate origin is at the corner of the global box where
x = 0, y = 0, z = 0. The box extends along the positive x-axis, positive y-axis, and the
negative z-axis. Each node corresponds to a row in the matrix. A global identifier, assigned
using coordinates and global box dimensions, adds coding convenience to some aspects of
matrix-structure generation and finite-element assembly.

The domain is partitioned using the Recursive Coordinate Bisection method [6], and
thus some processors own non-contiguous blocks of global node identifiers. Since it is conve-
nient for matrices and vectors to store contiguously- numbered blocks of rows, global node

43

Figure 5.11. miniFE hexahedral finite element

identifiers are mapped to a separate space of row numbers such that each processor’s nodes
correspond to a contiguous block of row numbers.

The code, written using C++, is configured for parallel computation using the MPI-
everywhere model. MiniFE has also been configured for computation on multicore nodes,
including pthreads and Intel Threading Building Blocks (TBB) for homogeneous multicore
and CUDA for GPUs.

5.2.1 Model abstractions

MiniFE solves a scalar equation, and therefore there is one degree of freedom per mesh node.
Charon steady-state drift-di↵usion problems have three degrees of freedom (DOF) per mesh
node.

Runtime for typical Charon problems is focused in the Newton-Krylov solver. CG in
MiniFE is intended to be su�ciently realistic to be representative of the performance of
the Krylov solver portion in an application code, e.g. to be representative of the scaling of
a single Krylov iteration. As miniFE solves a completely di↵erent set of physics, it is not
intended to predict the either the number of Krylov iterations required or the number of
Newton steps required. For our studies, the number of Krylov iterations for miniFE and a
Newton step of Charon will be the same. Answers provided from miniFE and Charon will
be completely di↵erent, however the goal is to see what insight into Charon performance
miniFE can provide.

5.2.2 Performance Domain

D1 :Node memory bandwidth

D2 :Cache hit-to-miss ratio

D3 :Weak scaling

44

We examine performance on three distinct architectures. Cielo, a Cray XE6, consists
of dual-socket 8-core AMD Opteron Magny-Cours processor based nodes connected by a
custom Gemini network configured as a three dimensional torus. Chama consists of dual-
socket 8-core Intel Sandy Bridge processor based nodes connected by a Qlogic InfiniBand
network configured as a fat tree. Red Sky consists of dual-socket quadcore Intel Nehalem
processor based nodes connected by a Mellanox InfiniBand network configured as a three
dimensional torus. We supplement these machines with related architectures that allow for
more flexible experiments.

5.2.3 Diagnostic: Node memory bandwidth

Memory bandwidth within a multicore processor based node is seen as having a significant
impact on the performance of an application. A typical means for exploring this issue is
to vary the number of processor cores employed on the node and comparing the resulting
performance e�ciency. Figure 5.12(a) illustrates the results of this experiment applied to
the solver phases on a Cray XE6 node configured using dual-socket 12-core AMD Opteron
Magny-Cours processors. As has been observed in a variety of cases [11, 22, 1], the e�ciency

(a) E�ciency (b) Metric

Figure 5.12. E↵ects of the number of cores per node on
the FEA and solver phases of Charon and miniFE.

of each processor decreases as the number of cores per node increases. A proportional
comparison (Figure 5.12(b)) reveals that the responses by Charon and miniFE are within
about 13% at worst, suggesting that the miniapp is predictive of the e↵ects of memory
bandwidth on Charon. However, in a validation study, stronger evidence is needed to make
this claim.

Using a dual-socket quadcore Intel Nehalem 5560 clocked at 2.8 GHz processors and a
dual-socket 8-core AMD Magny-Cours 6136 clocked at 2.4 GHz, experiments were configured
to better focus on memory bandwidth. The machines were configured to provide memory
speeds of 800 MHz, 1066 MHz, and 1333 MHz. Results, illustrated in Figure 5.13, show

45

(a) FEA, normalized data (b) Solver, normalized data

(c) Metric

Figure 5.13. E↵ects of memory speeds on the FEA and
solver phases of Charon and miniFE. Performance is relative
to 1333 MHz.

that the FEA phases for miniFE and Charon are not impacted by the change in bandwidth,
while their solvers are. A proportional comparison (Figure 5.13(c)) shows miniFE is within
4% of all measures of Charon, leading us to claim that miniFE is predictive of Charon with
regard to on-node memory bandwidth.

5.2.4 Diagnostic: Cache performance

The next diagnostic considers cache performance, again with the separation of between the
FEA and solver phases, and again using the Nehalem and Magny-Cours nodes, each with
three levels of cache (L3 is shared across cores in a socket). The hit rate, defined as the
proportion of the number of times the processor finds needed data in a cache with the
total number of times it looks for data in that cache, plays a significant role in processor
performance. Results are shown in Figure 5.14. For the FEA phase, Charon and miniFE

46

(a) FEA hit rate (b) FEA metric

(c) Solver hit rate (d) Solver assembly metric

Figure 5.14. Cache behavior of the FEA and solver phases
of Charon and miniFE.

show strong use of level 1 cache, with a proportional di↵erence of no more than 3%. However,
level 2 and 3 hit rates are significantly di↵erent, with miniFE 3 and 6 times, respectively,
from Charon, leading us to claim that the cache performance of FEA in miniFE is not
predictive of that for Charon. For the solver phase, we believe that cache performance is
predictive. Although the thresholds for acceptance for level 2 and 3 are arguably high (20%)
the trends are clear.

Most interesting is that the Charon/Aztec solver’s surprisingly low level 2 hit rate seen
on the Nehalem is also seen with miniFE. Given that this is unexpected given Magny-Cours
and other past observations, care must be taken with regard to attribution. It is possible that
measurement intrusion is to blame, or perhaps a hardware configuration issue. Additional
experiments are required to make strong causal claims, since it is possible that measurement
intrusion is to blame, or perhaps a hardware configuration issue.

47

5.2.5 Diagnostic: Weak scaling

Next we examine weak scaling characteristics of Charon and miniFE up to 16k core counts.
Diagnostics include the Charon/Aztec BiCGSTAB solver with two preconditioning strate-
gies, an incomplete factorization algorithm with no fill (ILU(0)) and a multilevel (ML)
algorithm. Results for each are analyzed in comparison to miniFE, which does not employ a
preconditioner. The general idea is that Krylov solvers perform common computations (e.g.
addition and scaling of vectors, inner products, and sparse matrix-vector products. Further,
applications typically use a breadth of preconditioners, so our goal is to understand where
specificity is required and where it is not necessary. Performance is illustrated in Figure
5.15. We have not yet determined an e↵ective means for analytically comparing scaling be-

(a) Chama (b) Cielo

(c) Red Sky

Figure 5.15. Relative scaling of solvers

havior. Instead we can reason about the curves by first noting that performance is di↵erent
on di↵erent architectures, which we speculate is a function of the di↵erence preconditioning
strategies. Although the di↵erence between miniFE and Charon with ML preconditioning
is large, this is not reason enough to reject the relationship. Instead, we claim that miniFE
is not predictive of Charon with ML because miniFE does not include the sorts of compu-

48

tations found in ML. Further, an analysis of the interprocess message passing requirements
shows that ML sends over 40% more message per core than do the other configurations.

The di↵erence between Charon with ILU(0) preconditioning and miniFE is less clear,
with reasoning driven from the position in the codesign space. For example, from the per-
spective of some hardware architects, these two approaches are not predictive. However,
from the perspective of an algorithm developer perhaps investigating new programming
models, miniFE performance could be reasonably predictive. Even with the Charon/Aztec
BiCGSTAB solver being similar to CG in miniFE, there still are substantial di↵erences be-
tween the two cases, such as the signficant di↵erence in how the domain decomposition is
performed. Clearly further investigation into this issue is needed. Therefore we assign this
diagnostic a caution assessment.

5.2.6 Discussion

One of the intentions of miniFE is to be representative of the performance of a Krylov
solver employed in an implicit finite element application code. For the case where miniFE
models a completely di↵erent set of physics than an application code such as Charon, it
is not intended to predict either the number of Krylov iterations required or the number
of Newton steps required for the application code. From the memory bandwidth studies
(both changing the channel frequency and increasing contention by increasing the number
of processes) and cache hit rate studies, miniFE seems to do a good job being representative
of the performance of the Charon/Aztec Krylov solver within a single compute node. But
the scaling studies for large numbers of compute nodes demonstrate the di↵erences between
miniFE and Charon. As miniFE does not have a preconditioner, it clearly was not intended
to model an application code that employs a multigrid preconditioner. This is a concern
for future large-scale simulations that will require a multilevel/multigrid preconditioner in
order to achieve convergence. Regarding the disparity between miniFE and Charon/Aztec
without a multilevel preconditioner, further investigations into the impact of di↵erences such
as the di↵erence in domain decomposition is necessary.

5.3 A Shock Physics code

CTH is a multi-material, large deformation, strong shock wave, solid mechanics code de-
veloped at Sandia National Laboratories [19]. CTH has models for multi-phase, elastic
viscoplastic, porous and explosive materials, using second-order accurate numerical methods
to reduce dispersion and dissipation and produce accurate, e�cient results.

Two distinct problems are commonly modeled by CTH. The meso-scale impact in a
confined space problem is computationally well-balanced across the parallel processes. This
problem involves 11 materials, inducing the boundary exchange of 75 variables. The shaped
charge problem, illustrated in Figure 5.3, involves four materials, inducing the boundary

49

Figure 5.16. CTH shaped charge simulation

Time progresses left to right.

exchange of 40 variables. (This problem was used in the acceptance testing for the NNSA
ASC campaign’s latest capability computer, Cielo [10].)

Several times each time step boundary information is aggregated and exchanged with up
to six neighbors in the grid of processors. Also, several reductions (mostly MPI Allreduce

on 8-byte data) during each time step.

MiniGhost is serving as a proxy for CTH, in terms of the following:

A broad range of physical phenomena in science and engineering can be described math-
ematically using partial di↵erential equations. Determining the solution of these equations
on computers is commonly accomplished by mapping the continuous equation to a discrete
representation. One such solution technique is the finite di↵erencing method, which lets us
solve the equation using a di↵erence stencil, updating the grid as a function of each point
and its neighbors, presuming some discrete time step. The algorithmic structure of the finite
di↵erence method maps naturally to the parallel processing architecture and single-program
multiple-data (SPMD) programming model. For example, on a regular, structured grid,
O(n2) computation is performed, with nearest neighbor O(n) inter-process communication
requirements.

On parallel processing architectures, these sorts of computations require data from neigh-
boring processes. Inter-process communication is typically abstracted into some sort of
functionality that may be loosely described as boundary exchange (likewise also called ghost-
or halo-exchange) This notion of mapping a continuous problem to discrete space and the
inter-process communication requirement induced by spacially decomposing the grid across
parallel processes adheres to the bulk-synchronous parallel programming model (BSP [40]),
arguably the dominant model for implementing high performance portable parallel process-
ing scientific applications [4].

In the BSP/message aggregation (BSPMA) model, data from multiple (logical) memory
locations are combined into a user-managed array with other data, then subsequently trans-
mitted to the target process. This step incurs three costs: memory utilization (the message
bu↵ers), on-node bandwidth (copies into the bu↵er), and synchronization (leading up to and

50

including the data transfer).

Several times within a time step boundary information is aggregated and exchanged with
up to six neighbors in the grid of processors. For the shaped-charge problem these messages
average 4.1 MB and for the meso-scale problem these messages average 10.4 MB. Process 0
and a couple of other processors near it for the shaped charge problem have more work since
they are the genesis of the explosion and thus have additional work relative to the other
processes. The runtime trace shows significantly less waiting time than the other cores.

We compared performance of miniGhost and CTH on a Cray XT5. Results are shown
in Figure 5.17. Run in weak scaling mode on up to 1,024 processor cores (this XT5 is a

Figure 5.17. Performance: CTH and miniGhost

dual-socket AMD Opteron Istanbul hex-core node based machine with SeaStar interconnect,
details in [42]), miniGhost tracks CTH performance reasonably well.

Although the above does not fully validates miniGhost as representing CTH performance
in the defined context, combined they o↵er substantial encouragement that the connection is
worthwhile. In particular, though, miniGhost does provide a contextual means for exploring
various boundary exchange configurations such as those listed in the next section.

5.3.1 Model abstractions

As stated throughout this paper, miniapps are not intended to capture all aspects of a
particular application. Instead, they are designed to represent issues that critically impact
the runtime characteristics of large scale application programs. In addition to enabling a
stronger focus on a limited set of important issues in a particular application, this approach
allows a miniapp to be representative of more than one application, and in some cases,
represent a class of applications and algorithms. Toward that end, below is a list of some

51

key distinctions between miniGhost and CTH.

• stencils CTH is a finite volume code, and thus it has values that are based at cells
and at the nodes. CTH does several things with the values of variables in both the cell
being computed and the surrounding cells. Portions of the code simply use the values
of di↵erent variables in a given cell to calculate new values of those and other variables
in that cell (for example equation of state calculations). Other portions use the value
of variables in a cell and those neighboring cells in some direction to calculate new
values (such as advection). And other portions of the code use values from variables
in all 26 neighboring cells to calculate values of variables in a cell (such as interface
tracking). This can alter cache and other behavior. MiniGhost computations in some
sense, though, provide a meaningful context for the interprocess communication, which
looks similar to a finite di↵erence code.

• ack to ensure receive posted In CTH, prior to sending a message containing bound-
ary data to a neighbor, an MPI process waits for a message from the target processes,
which alerts the sending process that the matching receive is posted. The intent is to
avoid unexpected messages, potentially a serious issue given the typically large amount
of data transmitted. This is a meaningful approach on some architectures, such as Red
Storm [37], but is of no help on most, which include a built-in acknowledgement hand-
shake prior to sending messages. Further, the MPI specification provides functionality
managing this. Regardless, our intent is to test the capabilities of the MPI implemen-
tation on the target architecture external of some means for adapting to the specific
capabilities of a particular implementation. That said, one use of a miniapp is to
provide a lower impact means for testing other approaches and ideas.

• reductions CTH makes several calls to MPI colletives (e.g. 90 for some problem
sets, and typically to MPI Allreduce with a small count input) throughout a time
step. MiniGhost is configured to include this as an option, with the intent of injecting
collective synchronization.

• data structure CTH manages material mesh data as sets of two dimensional slices,
contained in a single pool of allocated memory. This memory management scheme is
a relic of past language constraints. MiniGhost allocates distinct three dimensional
arrays, each representing a material.

• load imbalance and AMR CTH is a multi-material code, so over time materials enter
and exit cells, altering the computational load as well as interprocess communication
requirements. Further, CTH also provides the option for adaptive mesh refinement
(AMR), which focuses attention on cells under some specified condition. The cell is
(evenly) divided into four new cells. If necessary, neighboring cells will be divided in
order to maintain at most two neighboring cells. Future plans call for the incorporation
load imbalance into miniGhost as a means of studying the e↵ects of this behavior.

52

5.3.2 Performance Domain

MiniGhost is designed to capture the inter-process communication requirements of CTH.
Therefore the diagnostics are defined to measure its message passing characteristics.

D1 :Number of communication partners (neighbors)

D2 :Number of messages per boundary exchange.

D3 :Message volume (bytes per neighbor)

D4 :Weak scaling

Two problem sets described above (shaped charge and meso-scale) provide the drivers
for these measurements.

In order to ensure that miniGhost accurately reflects the inter-process communication be-
havior, it is important to understand the inter-process communication infrastructure, includ-
ing physical interconnect, logical to physical process maps, system software, and ultimately
to how the application manages its communication requirements.

For example, when MPI communication is initiated, bu↵ers are configured for managing
message queues, unexpected messages, etc. In the distinct communication/computation
phases of the full application, the compute stage touches enough data to ensure that all
communication data structures have been flushed from the processor cache hierarchy and
must be refetched from main memory upon the initiation of the communication phase. The
work in miniGhost must be enough in order for this to occur. Thus for example, a single
variable weak scaling problem of dimension 100⇥ 100⇥ 100 in 8-byte precision means that
an eight MByte variable is operated on, stored into another eight MByte variable. Thus 16
MBytes of memory has been traversed by the processor, e↵ectively flushing a cache of that
size.

Alternative methods for moving the data are being explored using miniGhost, and there-
fore the experimenter must take this into consideration.

5.3.3 Diagnostics: Boundary exchange characteristics

MiniGhost can be configured to match the number of communication partners, the number
of variables, and the dimensions of those variables such that the boundary exchange is the
same as with CTH. Figure 5.18 illustrates the communication patterns of two important
CTH problems with that of miniGhost.

Diagnostics D1, D2, and D3 were configured, and were verified, to be equivalent between
miniGhost and the CTH problems under consideration.

53

(a) CTH shaped charge (b) CTH mesoscale (c) miniGhost

Figure 5.18. Boundary exchange communication patterns
for the CTH shaped charge problem and miniGhost. The
process in row i sends data to the process in column j.

5.3.4 Diagnostic: Weak Scaling

CTH provides a typical example of a code team adapting to computing architectures: in
order to avoid message latencies and exploit global bandwidth, computation is performed
across as many variables as possible before an boundary exchange across those variables can
be consolidated in to a single message per neighbor. But in a recently completed broad-based
study of Cielo capabilities [3], and reproduced on Chama, the nearest neighbor boundary
exchange encountered significant scaling degradation beyond 8,000 processor cores. This
issue is predicted by miniGhost, illustrated in Figure 5.19.

The problem was traced to the mapping of the parallel processes to the three dimensional
torus topology, illustrated in Figure 5.20. Neighbors in the x direction required a maximum
of one hop and in the y direction a maximum of two hops. But the number of hops across
the network (referred to as the Manhattan distance) was shown to increase significantly in
the z direction. This combined with the very large messages of a typical CTH problem set
(e.g. for the “shaped charge” problem, 40 three dimensional state variable arrays generated
message lengths of almost 5 MBytes) resulted in poor scaling beginning at 8k processes, a
trend that accelerated after 16k processes.

In response, we implemented a means by which the parallel processes could be logically
re-mapped to take advantage of the physical locality induced by the communication require-
ments. In the normal mode, CTH (and miniGhost) assigns blocks of the mesh to cores in
a manner which ignores the connectivity of the cores in a node. On Cielo, as with other
Cray X-series architectures, cores are numbered consecutively on a node, and this numbering
continues on the next node. Blocks of the mesh are assigned to cores by traversing the blocks
of the mesh in the x direction of the mesh starting at one corner of the mesh. Once those

54

(a) Cielo (b) Chama

Figure 5.19. Weak scaling of CTH and miniGhost on Cielo
and Chama

blocks are assigned, the next block assigned is the block one over in the y direction of the
mesh from the first block assigned. The mesh is again then traversed in the x direction and
blocks are assigned to cores. This process is continued until there are no more blocks in the
y direction. The next block assigned is then the first block in the z direction from the first
block assigned. The blocks of the mesh with this z value are then assigned as the first blocks
were assigned. This process is then repeated until all blocks in the mesh have been assigned
to cores in the machine.

Our remapping algorithm assigns blocks of the mesh to the cores of the machine by
groups. On Cielo, a group of blocks consists of a 2⇥ 2⇥ 4 group of blocks. These blocks are
then assigned to nodes as above. The result is a slight increase in the average hop counts in
the x and y directions, but a significant decrease in the average hop count in the z direction.
A comparison of the number of hops between the two approaches is shown in Table 5.2.

This remapping strategy results in a significant improvement in scaling performance,
illustrated in in Figure 5.21(a). Figure ?? shows that this is attributable to controlling the
time spent sending data in the z direction. We include the time spent in the reduction sum
across each grid variable (inserted after computation on each variable to add application
realism as well as a synchronization point), illustrating that this functionality is not the
source of the issue, scaling well regardless of the processor mapping. We do see indications
of the issue at the highest processor counts, though it is less pronounced. This remapping
was incorporated into CTH, the results of which are described in Appendix ??.

As discussed in the related work section above, we are exploring ways for incorporating
these ideas into a more general interface. We are also exploring the use of MPI Datatype in
handling the non-contiguous (but patterned) face data.

55

...

95 94 93 92 91 90

012345

67891011

121314151617
16

6

...

Figure 5.20. Cielo process map

5.3.5 Alternative communication strategies

Node interconnects are also evolving, driven by new node architectures as well as cost and
energy conservation goals, encouraging exploration of new approaches within the context
of application requirements. Interconnects are designed as a balance of global bandwidth
(the ability of the interconnect to move data), inject bandwidth (the ability of the NIC to
put data onto the interconnect), and injection rate (the ability of a node to place messages
onto the NIC). Global bandwidth typically incurs the highest costs, both in terms of money
and power consumption, and therefore we are preparing for a proportional decrease in that
capability.

MiniGhost includes an application-relevant infrastructure for exploring alternative bound-
ary exchange configurations [5]. The first configuration mimics that of CTH, which we call
Bulk Synchronous Parallel with Message Aggregation (BSPMA), was used above, illustrated
in Figure 5.22. The second, called Single Variable Aggregated Faces (SVAF) transmits data
as soon as computation on a variable is completed, and thus six messages are transmitted for
each variable (up to 40), one to each neighbor, each time step. (Looking at Figure 5.22, this
eliminates the inner END DO and DO I = 1, NUM VARS.) The two x� y faces are contiguous
in memory, so each may be directly sent using a call to a single MPI function. The other
four faces are aggregated into bu↵ers, resulting in four messages to their neighbors. A third
mode, called single variable, contiguous pieces, computational overlapping mode (SVCP),
is designed for use on architectures that are strongly biased toward significantly increased
message injection rates and injection bandwidth, a trend we see developing but not yet to
the extent of supporting this configuration using MPI [35].

BSPMA and SVAF have been configured for MPI-everywhere as well as MPI+OpenMP.
For the latter on Cielo and Curie, its best configuration is four MPI ranks on each node,

56

Number of Regular Order Reordered
MPI ranks X Y Z X Y Z

16 0.0 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0 0.0
64 0.0 0.0 0.3 0.0 0.3 0.0
128 0.0 0.0 1.0 0.0 0.5 0.0
256 0.0 0.0 1.0 0.0 0.5 0.3
512 0.0 0.1 2.0 0.0 0.6 0.4
1024 0.0 0.3 2.1 0.2 1.0 0.7
2048 0.0 0.3 2.7 0.3 1.2 1.2
4096 0.0 0.3 3.7 0.3 1.2 1.2
8192 0.0 0.5 5.1 0.2 1.1 2.0
16384 0.0 0.5 4.9 0.2 1.1 2.2
32768 0.0 0.5 5.6 0.2 1.1 2.5
65536 0.0 1.1 10.2 0.2 1.6 2.8
131072 0.0 1.1 10.1 0.2 1.6 3.1

Table 5.2. miniGhost average hop counts on Cielo

each spawning four OpenMP threads. Note that this increases the size of each message in
comparison with the MPI-everywhere version. Because of ghost cells, the message size in
two directions almost doubles and the message size in the third direction almost quadruples.
This is because the number of cells in two of the three directions is doubled. The size of the
message is based the size of the face with ghost cells, so if the size of a face is x⇥ y cells for
the MPI everywhere case, the size of the message is (x+ 2) ⇤ (y + 2). If the number of cells
in one of these directions (say y) is doubled, then the size of the message is (x+2)⇤ (2y+2),
which is not quite double the original size, but close. Similarly, if the number of cells in both
directions are doubled, then the size of the message is almost quadrupled.

Performance of these implementations on Cielo are shown in Figure 5.23. E↵ective map-
ping of processes to processors is again critical to achieving good scaling, and as the number
of processors increases, SVAF becomes the best strategy. This is of significant interest since
it reduces demand on costly global bandwidth by a factor of N , where N is the number of
variables aggregated (40 for the shaped charge problem.)

5.3.6 Discussion

In some cases diagnostics are by themselves not very meaningful. However, they often provide
meaning in the context of other diagnostics. For example, the number of communication
partners (D1) and messages per boundary exchange (D2), when operating on static meshes,
are expected to be (and are) the same between the app and miniapp. This then relates

57

(a) Cielo (b) Chama

Figure 5.21. Performance of MiniGhost with MPI-rank
remapping on Cielo

to the interpretation of the message frequency and volume. The importance of D1 and D2

increases when the application is examined when executing on a dynamic mesh (i.e. Adaptive
Mesh Refinement, AMR). Future work calls for determining the predictive capabilities of
miniGhost as a static code with regard to CTH as an AMR code.

5.4 A Circuit Simulation code

Xyce is a circuit modeling tool 3 [21] developed at Sandia National Laboratories. It is
designed to perform transistor-level simulations for extremely large circuits on large-scale
parallel computing platforms of up to thousands of processors. Xyce is a traditional analog-
style circuit simulation tool, similar to the Berkeley SPICE program[25].

Circuit simulation adheres to a general flow, as shown in Fig. 5.24. The circuit, described
in a netlist file, is transformed via modified nodal analysis (MNA) into a set of nonlinear
di↵erential algebraic equations (DAEs)

dq(x(t))

dt
+ f(x(t)) = b(t), (5.6)

where x(t) 2 RN is the vector of circuit unknowns, q and f are functions representing the
dynamic and static circuit elements (respectively), and b(t) 2 RM is the input vector. For
any analysis type, the initial starting point is this set of DAEs. The numerical approach
employed to compute solutions to equation (5.6) is predicated by the analysis type.

3
http://xyce.sandia.gov/

58

http://xyce.sandia.gov/

Figure 5.22. CTH boundary exchange and computation

(a) Cielo (b) Cielo

Figure 5.23. Performance of miniGhost Communication
Strategies on Cielo

Circuit simulation can be coarsely divided into three phases that play a distinct role in the
overall performance of a simulation. The first two phases result naturally from the evaluation

59

Figure 5.24. General Circuit Simulation Flow in Xyce

60

and the solution of the circuit equation (5.6) and are called the “Device Evaluation” and
“Linear Solve” phases. In general, load balancing each of these two phases has competing
objectives, indicated by Fig. 5.25, which requires a rebalancing of the problem between those
phases.

Figure 5.25. Di↵erent Load Balance/Partitioning for De-
vice Evaluation and Linear Solve

The relative amount of time spent in each of those two phases is problem-dependent.
For smaller problems, the device evaluation phase should dominate the runtime, especially
when the circuit includes modern transistors. As the problem size increases, the linear solve
phase will dominate, as it should scale super-linearly, while the device evaluations should
scale linearly. This is because linear solution methods (whether they be direct or iterative)
are generally communication intensive, while the communication volume required during the
device evaluations is relatively small.

As a result, the device evaluation phase has historically been naively balanced by taking
into account only the computational work required, while the matrix partitioning has been
designed to minimize communication volume. How this communication volume is measured,
and how it is optimized is an active area of research for many types of numerical simulation
problems. Since the device evaluation and linear solve phases have di↵erent load balance
requirements, Xyce has been designed to have completely di↵erent parallel partitioning for
each. A simplified representation of this is shown in Fig. 5.25.

The third phase is “Parsing”, where the hierarchical netlist file, describing the network
elements and connectivity, is read in and the set of DAEs is constructed and partitioned
across processors. In the total runtime of a simulation the netlist parsing doesn’t take a
large percentage, but the decisions made about partitioning devices over processors in this
phase can possibly have a significant e↵ect for emerging architectures, making it a phase
worth studying.

Given the hierarchical structure possible in the netlist file, parsing is a largely serial

61

process, where devices are naively partitioned according to a “first-come-first-served” basis.
This process is not guided by circuit topology or computational cost of the individual device
evaluations, which can vary widely. This design has not been troublesome on the distributed-
memory machines that Xyce was designed for. However, future architectures may prove this
approach is too simplistic.

5.4.1 Model Abstractions

At this time, miniXyce is a simple linear circuit simulator with a basic parser that per-
forms transient analysis on any circuit with resistors (R), inductors (L), capacitors (C), and
voltage/current sources. The parser incorporated into this version of miniXyce is a single
pass parser, where the netlist is expected to be flat (no hierarchy via subcircuits is allowed).
Simulating the system of DAEs generates a nonsymmetric linear problem, which is solved
using un-preconditioned GMRES [34]. The time integration method used in miniXyce is
backward Euler with a constant time-step.

The development of the first version of miniXyce resulted in something closer to a compact
application than a miniapp since more focus was put on the simulator returning the correct
answer, than modeling performance characteristics of interest. Further analysis of Xyce
has called out particular performance issues in the three phases discussed in Section 5.4.
These issues will inspire enhancements to, and a second version of, miniXyce. For complex
simulation codes, developing a representative miniapp may become an iterative process,
where performance issues are investigated in order of an application-based priority.

5.4.2 Model Enhancements

Enhancements to the first version of miniXyce will focus on two of the three phases dis-
cussed in Section 5.4: “Parsing” and “Device Evaluation”. The third phase, the “Linear
Solve”, shares performance characteristics and issues with other implicit application codes,
like Charon. While this phase dominates the runtime for large-scale circuits, it is uncertain if
focusing on that aspect of miniXyce will be a duplication of e↵ort with miniFE. However, the
“Parsing” and “Device Evaluation” phase are unique to circuit simulation. By focusing on
these two phases, it is anticipated that miniXyce will provide a di↵erent performance char-
acterization than any other miniapp. Alternatively, it will give Xyce a unique opportunity
to explore the impact of naively partitioning the network and devices.

62

Chapter 6

Summary and future work

Miniapps provide a tractable means for rapid exploration of issues associated with e↵ectively
executing large scale scientific and engineering applications on current, emerging, and future
architectures.

We presented a methodology for understanding the relationships between an application
proxy (the miniapp) and the application in the manner in which it is intended to represent.
Four distinct applications provided the means for demonstrating this link. Using a miniapp
(miniMD) closely aligned to the application (LAMMPS) it is intended to represent, we could
in some strong sense, calibrate this approach. MiniGhost provides a means for focusing
on the inter-process communication requirements of an application (here CTH), with the
computation serving to create a separation between the transmission of data between the
parallel processes. Within certain limits, MiniFE provides a means to investigate linear solver
performance for an implicit finite element method on unstructured mesh application code.
Through this work it was determined that miniXyce requires additional analysis, design, and
implementation in order for it to serve the performance goals of the Xyce team.

Another use of miniapps is to provide a tractable means for using simulators, such as
the Structural Simulation Toolkit (SST). Because we don’t expect simulator results to align
perfectly with the miniapp experiments (just as they do no herein), this methodology would
enable an analytic means for understanding how the simulator results map to the miniapp
experiments. Here the baseline observations B would be the miniapp and the corresponding
measurements A would be that predicted by the simulator. We expect to report on results
of these sorts of experiments soon.

63

64

References

[1] S.R. Alam, R.F. Barrett, J.A. Kuehn, P.C. Roth, and J.S. Vetter. Characterization
of Scientific Workloads on Systems with Multi-core Processors. In IEEE International
Symposium on Workload Characterization, 2006.

[2] K. Alvin et al. On the Path to Exascale. International Journal of Distributed Systems
and Technologies, 1(2):1–22, 2010.

[3] B.W. Barrett et al. Report of Experiments and Evidence for ASC L2 Milestone
4467 - Demonstration of a Legacy Application’s Path to Exascale. Technical Report
SAND2012-1750, Sandia National Laboratories, 2012.

[4] R.F. Barrett, S. Ahern, M.R. Fahey, R. Hartman-Baker, J.K. Horner, S.W. Poole,
and R. Sankaran. A Taxonomy of MPI-Oriented Usage Models in Parallelized Scientific
Codes. In The International Conference on Software Engineering Research and Practice,
2009.

[5] R.F. Barrett, C.T. Vaughan, and M.A. Heroux. MiniGhost: A Miniapp for Exploring
Boundary Exchange Strategies Using Stencil Computations in Scientific Parallel Com-
puting. Technical Report SAND2011-5294832, Sandia National Laboratories, May 2011.
https://software.sandia.gov/mantevo/publications.html.

[6] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Comput., 36:570–580, May 1987.

[7] R. Brightwell, K.T. Pedretti, K.D. Underwood, and T. Hudson. SeaStar Interconnect:
Balanced Bandwidth for Scalable Performance. IEEE Micro, 26:41–57, 2006.

[8] D. Buttlar, B. Nichols, and J.P. Farrell. pthreads Programming. O’Reilly & Associates,
Inc., 1996.

[9] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering, 5(1):46 –55, 1998.

[10] D.W. Doerfler, M. Rajan, C. Nuss, C. Wright, and T. Spelce. Application-Driven
Acceptance of Cielo, an XE6 Petascale Capability Platform. In Proc. 53rd Cray User
Group Meeting, 2011.

[11] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy. The Impact of Multicore on Com-
putational Science Software. CTWatchQuarterly, 3(1), February 2007.

[12] J. Dongarra and P. Luszczek. Beautiful Code: Leading Programmers Explain How
They Think, chapter How Elegant Code Evolves with Hardware: The Case of Gaussian
Elimination. O’Reilly, 2007.

65

https://software.sandia.gov/mantevo/publications.html

[13] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, and M.G. Sala. ML 5.0 Smoothed
Aggregation User’s Guide. Technical Report SAND2006-2649, Sandia National Labo-
ratories, 2006.

[14] A. Geist and S. Dosanjh. IESP Exascale Challenge: Co-Design of Architectures and
Algorithms. Int. J. High Perform. Comput. Appl., 23:401–402, November 2009.

[15] G. L. Hennigan, R. J. Hoekstra, J. P. Castro, D. A. Fixel, and J. N. Shadid. Simulation
of Neutron Radiation Damage in Silicon Semiconductor Devices. Technical Report
SAND2007-7157, Sandia National Laboratories, 2007.

[16] M. Heroux. AztecOO user guide. Technical Report SAND2007-3796, Sandia National
Laboratories, 2007.

[17] M. A. Heroux et al. An Overview of the Trilinos Project. ACM Transactions on
Mathematical Software, 31:397–423, September 2005.

[18] M.A. Heroux et al. Improving Performance via Mini-applications. Technical Report
SAND2009-5574, Sandia National Laboratories, September 2009. https://software.
sandia.gov/mantevo/.

[19] E.S. Hertel and others. CTH: A Software Family for Multi-Dimensional Shock Physics
Analysis. In Proceedings, 19th International Symposium on Shock Waves, 1993.

[20] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[21] E.R. Keiter and others. Parallel Transistor-Level Circuit Simulation. In Peng Li,
Luis Miguel Silveira, and Peter Feldmann, editors, Advanced Simulation and Verifi-
cation of Electronic and Biological Systems. Springer, 2011.

[22] P.T. Lin and J.N. Shadid. Towards Large-Scale Multi-Socket, Multicore Parallel Sim-
ulations: Performance of an MPI-only Semiconductor Device Simulator. Journal of
Computational Physics, 229(19):6804–6818, 2010.

[23] P.T. Lin, J.N. Shadid, M. Sala, R.S. Tuminaro, G.L. Hennigan, and R.J. Hoekstra. Per-
formance of a Parallel Algebraic Multilevel Preconditioner for Stabilized Finite Element
Semiconductor Device Modeling. Journal of Computational Physics, 228(17):6250–6267,
2009.

[24] N. Metropolis. The Beginning of the Monte Carlo Method. Technical report, Los Alamos
National Laboratory, 1987.

[25] L. W. Nagel. SPICE 2, a Computer Program to Simulate Semiconductor Circuits.
Technical Report Memorandum ERL-M250, University of California, Berkley, 1975.

[26] W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Computing.
Cambridge University Press, 2010.

66

https://software.sandia.gov/mantevo/
https://software.sandia.gov/mantevo/

[27] W. L. Oberkampf and T. G. Trucano. Verification and Validation in Computational
Fluid Dynamics. Progress in Aerospace Sciences, 38, 2002.

[28] M. Pilch, T.G. Trucano, J. Moya, G. Froehlich, A. Hodges, and D. Peercy. Guidelines
for Sandia ASCI Verification and Validation Plans - Content and Format: Version 2.0.
Technical Report SAND2000-3101, Sandia National Laboratories, 2000.

[29] S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal
of Computational Physics, 117, 1995.

[30] S. J. Plimpton, R. Pollock, and M. Stevens. Particle-Mesh Ewald and rRESPA for Par-
allel Molecular Dynamics Simulations. In Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing, March 1997.

[31] S. J. Plimpton and A. P. Thompson. Computational Aspects of Many-body Potentials.
MRS Bulletin, to appear May 2012.

[32] D.E. Post and L.G. Votta. Computational Science Demands a New Paradigm. Physics
Today, 58(1):35–41, 2005.

[33] J.N. Reddy and D.K. Gartling. The Finite Element Method in Heat Transfer and Fluid
Dynamics. CRC Press, 2nd edition, 2001.

[34] Y. Saad and M.H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[35] H. Shan, N.J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann. A Prelim-
inary Evaluation of the Hardware Acceleration of the Cray Gemini Interconnect for
PGAS languages and comparison with MPI. In Proceedings of the second international
workshop on Performance modeling, benchmarking and simulation of high performance
computing systems, PMBS ’11, pages 13–14, New York, NY, USA, 2011. ACM.

[36] H. Simon, T. Zacharia, and R. Stevens. Modeling and Simulation at the Exascale for
Energy and the Environment: Report on the Advanced Scientific Computing Research
Town Hall Meetings on Simulation and Modeling at the Exascale for Energy, Ecological
Sustainability and Global Security (E3). Technical report, O�ce of Science, The U.S.
Department of Energy, 2007.

[37] J.L. Tomkins et al. The Red Storm Architecture and Early Experiences with Multi-core
Processors. International Journal of Distributed Systems and Technologies (IJDST),
1(2), April – June 2010.

[38] T. G. Trucano, M. Pilch, and W.L. Oberkampf. General Concepts for Experimental Val-
idation of ASCI Code Applications. Technical Report SAND2002-0341, Sandia National
Laboratories, 2002.

[39] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid. O�cial aztec user’s
guide–version 2.1. Technical Report SAND99-8801J, Sandia National Laboratories,
Albuquerque NM, 87185, Nov. 1999.

67

[40] L.G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33:103–111,
August 1990.

[41] H. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631–644,
1992.

[42] C.T. Vaughan, M. Rajan, R.F. Barrett, D.W. Doerfler, and K.T. Pedretti. Investigating
the Impact of the Cielo Cray XE6 Architecture on Scientific Application Codes. In
Workshop on Large Scale Parallel Processing, at the IEEE International Parallel &
Distributed Processing Symposium (IPDPS) Meeting, 2011. SAND 2010-8925C.

68

DISTRIBUTION:

1 Allen L. McPherson, Los Alamos National Laboratory, P.O. Box 1663,
Los Alamos, NM 87545

1 Charles H. Still, Lawrence Livermore National Laboratory P.O. Box 808,
Livermore, CA 94551-0808

1 MS 1319 James A. Ang, 1422

1 MS 1319 Richard F. Barrett, 1422

1 MS 0897 Teddy D. Blacker, 1543

1 MS 1322 Sudip S. Dosanjh, 1420

1 MS 1318 Robert J. Hoekstra, 1424

1 MS 1324 Robert W. Leland, 1400

1 MS 1323 William J. Rider, 1443

,

1 MS 0899 Technical Library, 9536 (electronic copy)

69

70

v1.37

	Summary
	1 Introduction
	2 Overview of the Mantevo Project
	3 Methodology
	3.1 Verification
	3.2 Validation
	3.3 A Discussion of Metrics

	4 Experimental Platforms
	4.1 Cielo: Cray XE6
	4.2 Red Sky
	4.3 Chama
	4.4 Some workstations

	5 Making the link to full applications
	5.1 A Molecular Dynamics code
	5.1.1 Model Abstractions
	5.1.2 Performance Domain
	5.1.3 Diagnostic: Total time
	5.1.4 Diagnostic: Force calculation time
	5.1.5 Diagnostic: Time for construction of neighbors
	5.1.6 Diagnostic: Time for inter-process communication
	5.1.7 Summary
	5.1.8 Performance on Red Sky
	5.1.9 Discussion

	5.2 A Semiconductor Device Simulation code
	5.2.1 Model abstractions
	5.2.2 Performance Domain
	5.2.3 Diagnostic: Node memory bandwidth
	5.2.4 Diagnostic: Cache performance
	5.2.5 Diagnostic: Weak scaling
	5.2.6 Discussion

	5.3 A Shock Physics code
	5.3.1 Model abstractions
	5.3.2 Performance Domain
	5.3.3 Diagnostics: Boundary exchange characteristics
	5.3.4 Diagnostic: Weak Scaling
	5.3.5 Alternative communication strategies
	5.3.6 Discussion

	5.4 A Circuit Simulation code
	5.4.1 Model Abstractions
	5.4.2 Model Enhancements

	6 Summary and future work
	References

